Abstract
The mRNA expression levels of acyl-CoA oxidase (AOX), a key enzyme in very-long-chain fatty acid peroxisomal oxidation, and of peroxisome proliferator-activated receptor-delta (PPAR-delta), a nuclear receptor possibly involved in the gene regulation of brain lipid metabolism, were determined in human Y79 retinoblastoma cells by using real-time quantitative polymerase chain reaction. Cells were dosed with alpha-linolenic acid (18:3n-3), the essential metabolic precursor of the n-3 polyunsaturated fatty acid series that normally gives rise through terminal peroxisomal oxidation to the synthesis of membrane docosahexaenoic acid (22:6n-3, or DHA). The AOX and PPAR-delta relative expression levels increased 2.3 and 3.4 times, respectively, upon dosing of cells with 7 microM 18:3n-3, whereas AOX cDNA abundance decreased by 50% upon dosing with 70 microM 18:3n-3. Concurrently, the DHA content increased by 23% in the membrane ethanolamine-phosphoglycerides from cells dosed with 7 microM 18:3n-3, whereas it decreased by 38% upon dosing with 70 microM 18:3n-3. The DHA's upstream precursors (20:5n-3 and 22:5n-3) both accumulated in cells dosed with 7 or 70 microM 18:3n-3. The 18:3n-3-induced changes in membrane phospholipid fatty acid composition support the hypothesis that the terminal peroxisomal step of n-3 conversion is rate limiting in the Y79 line. The concurrent 7 microM 18:3n-3-induced increase of mRNAs encoding for AOX and for PPAR-delta suggests that 18:3n-3 (or its metabolites) at low concentration could trigger its proper conversion to DHA, possibly through activation of PPAR-delta-mediated transcription of AOX. Decreased membrane DHA content and mRNA expression level of AOX in 70-microM 18:3n-3-dosed cells corroborated the relationship between AOX expression and DHA synthesis and suggested that simultaneous down-regulating events occurred at high concentrations of 18:3n-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.