Abstract

Docosahexaenoic acid (DHA, an n-3 polyunsaturated fatty acid) inhibits U46619 (a TP receptor agonist)- and prostaglandin F2α-induced contractions in rat aorta and mesenteric arteries. However, whether these effects could be replicated in vasospasm-prone vessels, such as coronary and cerebral arteries, remains unknown. Here, we evaluated the changes in pig coronary and basilar artery tensions and intracellular Ca2+ concentrations in human prostanoid TP or FP receptor-expressing cells. We aimed to clarify whether DHA inhibits U46619- and prostaglandin F2α-induced contractions in spasm-prone blood vessels and determine if the TP receptor is the primary target for DHA. In both pig coronary and basilar arteries, DHA suppressed U46619- and prostaglandin F2α-induced sustained contractions in a concentration-dependent manner, but did not affect contractions induced by 80 mM KCl. SQ 29,548 (a TP receptor antagonist) suppressed U46619- and prostaglandin F2α-induced contractions by approximately 100% and 60%, respectively. DHA suppressed both U46619- and prostaglandin F2α-induced increases in intracellular Ca2+ concentrations in human TP receptor-expressing cells. However, DHA did not affect prostaglandin F2α-induced increases in intracellular Ca2+ concentrations in human FP receptor-expressing cells. These findings suggest that DHA potently inhibits TP receptor-mediated contractions in pig coronary and basilar arteries, and the primary mechanism underlying its inhibitory effects on arterial contractions involves inhibiting TP receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.