Abstract

BackgroundChronic pancreatitis (CP) is an irreversible progressive disease that destroys exocrine parenchyma, which are replaced by fibrous tissue. As pancreatic fibrosis is a key feature of CP, reducing fibrotic protein content in the pancreas is crucial for preventing CP. Studies suggest that NF-κB facilitates the expression of fibrotic mediators in pancreas and protein kinase C-δ (PKC-δ) regulates NF-κB activation in stimulated pancreatic acinar cells. Docosahexaenoic acid (DHA) is an omega-3 fatty acid having anti-inflammatory and anti-fibrotic effects. It has been shown to inhibit NF-κB activity in cerulein-stimulated pancreatic acinar cells which is a cellular model of CP. In the present study, we investigated if DHA inhibits expression of fibrotic mediators by reducing PKC-δ and NF-κB expression in mouse pancreatic tissues with CP.MethodsFor six weeks, mice were weekly induced for acute pancreatitis to develop CP. Furthermore, acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 7). Mice were administered DHA (10 μM) via drinking water before and after CP induction.ResultsCerulein-induced pancreatic damages like decreased pancreatic weight/total body weight, leukocyte infiltration, necrosis of acinar cells, and vacuolization were found to be inhibited by DHA. Additionally, DHA inhibited cerulein-induced fibrotic mediators like alpha-smooth muscle actin and fibronectin in pancreas. DHA reduced expression of PKC-δ and NF-κB p65 in pancreatic tissues of cerulein-treated mice.ConclusionsDHA may be beneficial in preventing CP by suppressing pancreatic expression of fibrotic mediators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.