Abstract

Choline is an essential nutrient for humans, and part of this requirement is met by endogenous synthesis catalyzed by hepatic phosphatidylethanolamine N-methyltransferase (PEMT). PEMT activity is difficult to estimate in humans because it requires a liver biopsy. Previously, we showed that mice that lack functional PEMT have dramatically reduced concentrations of docosahexaenoic acid (DHA; 22:6n-3) in plasma and of liver phosphatidylcholine (PtdCho)-a phospholipid formed by PEMT. The objective was to evaluate plasma PtdCho-DHA concentrations as a noninvasive marker of liver PEMT activity in humans. Plasma PtdCho-DHA concentrations were measured in 72 humans before and after they consumed a low-choline diet, and correlations were analyzed in relation to estrogen status, PEMT polymorphism rs12325817, the ratio of plasma S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy), and dietary choline intake; all of these factors are associated with changes in liver PEMT activity. PtdCho-DHA and PEMT activity were also measured in human liver specimens. At baseline, the portion of PtdCho species containing DHA (pmol PtdCho-DHA/nmol PtdCho) was higher in premenopausal women than in men and postmenopausal women (P < 0.01). This ratio was lower in premenopausal women with the rs12325817 polymorphism in the PEMT gene (P < 0.05), and PtdCho-DHA concentration and PEMT activity were lower in human liver samples from women who were homozygous for PEMT rs12325817 (P < 0.05). The ratio of DHA-PtdCho to PtdCho in plasma was directly correlated with the ratio of AdoMet to AdoHcy (P = 0.0001). The portion of PtdCho species containing DHA in plasma was altered in subjects who consumed a low-choline diet. PtdCho-DHA may be useful as a surrogate marker for in vivo hepatic PEMT activity in humans. This trial was registered at clinicaltrials.gov as NCT00065546.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call