Abstract

The clathrin coat assembly protein AP180 drives endocytosis, which is crucial for numerous physiological events, such as the internalization and recycling of receptors, uptake of neurotransmitters and entry of viruses, including SARS-CoV-2, by interacting with clathrin. Moreover, dysfunction of AP180 underlies the pathogenesis of Alzheimer's disease. Therefore, it is important to understand the mechanisms of assembly and, especially, disassembly of AP180/clathrin-containing cages. Here, we identified AP180 as a novel phosphatidic acid (PA)-binding protein from the mouse brain. Intriguingly, liposome binding assays using various phospholipids and PA species revealed that AP180 most strongly bound to 1-stearoyl-2-docosahexaenoyl-PA (18:0/22:6-PA) to a comparable extent as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is known to associate with AP180. An AP180 N-terminal homology domain (1–289 aa) interacted with 18:0/22:6-PA, and a lysine-rich motif (K38–K39–K40) was essential for binding. The 18:0/22:6-PA in liposomes in 100 nm diameter showed strong AP180-binding activity at neutral pH. Notably, 18:0/22:6-PA significantly attenuated the interaction of AP180 with clathrin. However, PI(4,5)P2 did not show such an effect. Taken together, these results indicate the novel mechanism by which 18:0/22:6-PA selectively regulates the disassembly of AP180/clathrin-containing cages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.