Abstract

Omega-3 fatty acids (n-3 FAs) have been shown to exert a blood pressure-lowering effect in hypertension, possibly in part by influencing vascular structure. We previously demonstrated that n-3 FAs induce vascular smooth muscle cell (VSMC) apoptosis, which could exert an effect on the structure of blood vessels. In the present study, we investigated signaling pathways through which n-3 FAs mediate apoptosis in VSMCs. Cultured mesenteric VSMCs from Sprague-Dawley rats were stimulated with docosahexaenoic acid (DHA), a representative n-3 FAs. Morphological changes in apoptosis and DNA fragmentation were examined with phase-contrast microscopy and fluorescence microscopy with Hoechst 33342 staining. To clarify possible pathways of apoptosis, we evaluated the expression of phosphorylated p38 mitogen-activated protein kinases, bax, bcl-2, cytochrome c, and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) with Western blot analysis. DHA treatment induced cell shrinkage, cell membrane blebbing, and apoptotic bodies in VSMCs. DHA time-dependently activated p38 mitogen-activated protein kinases, bax, PPAR-alpha, and cytochrome c, with maximal effects obtained after 5 and 30 minutes and 1 and 3 hours, respectively. SB-203580 and SB-202190, selective p38 inhibitors, reduced DHA-elicited apoptosis and expression of PPAR-alpha but had no effect on the expression of bax or cytochrome c. The present results indicate that DHA induces apoptosis in VSMCs through >/=2 distinct mechanisms: (1) a p38-dependent pathway that regulates PPAR-alpha and (2) a p38-independent pathway via dissipation of mitochondrial membrane potential and cytochrome c release. The death-signaling pathway stimulated by DHA may involve an integration of these multiple pathways. By triggering VSMC apoptosis, DHA may play a pathophysiological role in vascular remodeling in cardiovascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.