Abstract

This study applies a life cycle assessment (LCA) to the shared dockless standing e-scooter system that is established in Brussels. The results are given for four impact categories: global warming potential (GWP), particulate matter formation, mineral resource, and fossil resource scarcity. Regarding GWP, the use of the shared e-scooters in the current system causes 131 g of CO2-eq. per passenger-kilometer while the mode of transportation displaced has an impact of 110 g of CO2-eq. Thus, at present, the use of e-scooters shows a higher impact than the transportation modes they replace. The high results for the shared e-scooter, in terms of GWP, are mainly caused by the short lifespan of the shared e-scooter. Nevertheless, as the market further matures, the lifespan of e-scooters could increase and the impact per kilometer travelled could decrease accordingly. Regarding the use of the personal e-scooter, the LCA results show an impact of around 67 g of CO2-eq. This study quantifies the LC impacts of the current situation based on local, ‘real-life’ data. However, potential changes on soft mobility patterns induced by the use-oriented product-service system (PSS), such as a shared e-scooter system, could not be quantified.

Highlights

  • The transport sector contributes as much as 15.5% to the total world-wide global warming potential (GWP) [1]

  • The contribution analysis highlights a shift in the most impacting phase from the material and manufacturing phase to the distribution phase. This shift occurs when the lifetime reaches 1250 days. Through this contribution analysis we show the importance for the providers to concentrate on expanding the lifespan of their e-scooter first

  • The GWP of the use of the personal e-scooters is equal to 67 g of CO2-eq*p∙km−1

Read more

Summary

Introduction

The transport sector contributes as much as 15.5% to the total world-wide global warming potential (GWP) [1]. 25% of Brussels e-scooter users declared that one of the reasons why they first used the e-scooter was in order to lower the air pollution [4]. As their motor is electric, they have no tailpipe emissions during the trips, unlike any other modes of transportation that use a thermic motor. Previous life cycle assessments (LCAs) comparing internal combustion engine vehicles with electric vehicles (cars, motorcycles, bicycles), have shown that the manufacturing phase is, in proportion to the total life cycle, more impacting for electric vehicles than for internal combustion engine vehicles. The main contribution of our work is to provide scientific arguments on whether or not, and under which conditions, the use of e-scooters is a green solution for mobility

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.