Abstract

Aim of the study was designed for the design of novel indazole derivatives and evaluation of their docking against topoisomerase-II DNA gyrase enzyme for the antibacterial screening. Different novel substituted indazol-3-yl benzenesulfonamide derivatives were designed for the synthesis from o-chlorobenzonitrile and phenyl hydrazine reaction and further, with benzene sulphonyl chloride reaction. These were evaluated for their docking targeting topoisomerase-II DNA gyrase enzyme for the antibacterial screening. A range of binding affinity (˗12.2 to ˗9.6 ​kcal/mol) was observed. Compound, 4-chloro-N-(1-phenyl-1H-indazol-3-yl)benzenesulfonamide had the highest binding affinity (˗12.2 ​kcal/mol) which is better than the standard norfloxacin (˗10.7 ​kcal/mol). Compounds (12a, 12c, 12e and 12g) with chloro-substitution at para position of sulfonamide had higher affinity as compared to the compounds (12b, 12d, 12f and 12h) with methyl substitution. A convenient method for the synthesis of indazole derivatives has been developed. 4-chloro-N-(1-phenyl-1H-indazol-3-yl)benzenesulfonamide had shown the best binding affinity. Further, more diverse bioactive moieties may be incorporated into indazole scaffold in the near future by future researchers and a great amount of effort may be dedicated to the exploration of medicinal approaches for their preparation and evaluation of their biological activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call