Abstract

Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen-bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape-fitted docking between the HAT cores and interpenetrated three-dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single-crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer-Emmett-Teller surface area [SA(BET) ] of 1288 m2 g-1 . A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.