Abstract

This paper presents an algorithm for docking a torpedo-shaped autonomous underwater vehicle (AUV). We propose a new docking assessment algorithm comprising three phases: depth tracking, docking-feasibility region analysis, and docking-success probability evaluation. For depth-tracking analysis, a neural network-generated path is used to satisfy constrained docking conditions of depth and distance. With regard to docking feasibility region analysis, the working space of the AUV can provide a possibility region of successful docking. In the analysis, working space is expressed by a turning ellipsoid, which is the numerical solution of the maximum yawing motion. An algorithm is presented to evaluate the probability of docking success, based on the probability of sensor data. A good contribution of this approach is that a criterion for assessing the feasibility of the desired path for docking is given through the proposed docking assessment algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.