Abstract

We have performed docking of 3-fluoro-4-(pyrrolo[2,1-f][1,2,4]triazin-4-yloxy)aniline (FPTA), 3-fluoro-4-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)aniline (FPPA), and 4-(4-amino-2-fluorophenoxy)-2-pyridinylamine (AFPP) derivatives complexed with c-Met kinase to study the orientations and preferred active conformations of these inhibitors. The study was conducted on a selected set of 103 compounds with variations both in structure and activity. Docking helped to analyze the molecular features which contribute to a high inhibitory activity for the studied compounds. In addition, the predicted biological activities of the c-Met kinase inhibitors, measured as IC(50) values were obtained by using quantitative structure-activity relationship (QSAR) methods: Comparative molecular similarity analysis (CoMSIA) and multiple linear regression (MLR) with topological vectors. The best CoMSIA model included steric, electrostatic, hydrophobic, and hydrogen bond-donor fields; furthermore, we found a predictive model containing 2D-autocorrelation descriptors, GETAWAY descriptors (GETAWAY: Geometry, Topology and Atom-Weight AssemblY), fragment-based polar surface area (PSA), and MlogP. The statistical parameters: cross-validate correlation coefficient and the fitted correlation coefficient, validated the quality of the obtained predictive models for 76 compounds. Additionally, these models predicted adequately 25 compounds that were not included in the training set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.