Abstract
Previous studies have confirmed that docetaxel (DTX) treatment increases TNF-α production in cancer cells, but its mechanism of action remains unclear. Therefore, this study aimed to determine the signaling axis by which DTX induced the expression of TNF-α in U937 leukemia and MCF-7 breast carcinoma cells. DTX treatment promoted Ca2+-controlled autophagy and SIDT2 expression, resulting in lysosomal degradation of miR-25 in U937 cells. Downregulation of miR-25 increased NOX4 mRNA stability and protein expression. NOX4-stimulated ROS generation led to JNK-mediated phosphorylation of cytosolic HuR at Ser221, thereby increasing TNF-α protein expression by stabilizing TNF-α mRNA. Consequently, DTX induced TNF-α-dependent death in U937 cells. Depletion of HuR using siRNA or abolishment of JNK activation reduced TNF-α expression and eliminated DTX-mediated cytotoxicity. Knockdown of SIDT2 or pretreatment with chloroquine (a lysosome inhibitor) reduced DTX-induced NOX4 and TNF-α expression and mitigated JNK-mediated HuR phosphorylation. Altogether, our data indicate that DTX triggers HuR-mediated TNF-α mRNA stabilization through the Ca2+/SIDT2/NOX4/ROS/JNK axis, thereby inducing TNF-α-dependent apoptosis in U937 cells. In addition, DTX induces apoptosis in MCF-7 cells through SIDT2/NOX4/JNK/HuR axis-mediated TNF-α expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.