Abstract

Acquired docetaxel (doc) resistance, one of the major reasons for unfavorable prognosis in patients with aggressive hormone-independent prostate cancer (HIPC), is a major obstacle for patient treatment. Dysregulation of long non-coding RNAs promotes or suppresses chemoresistance in multiple cancers; however, the specific molecular mechanisms underlying HIPC remain unknown. In this study, we found that the LINC01085, as a tumor-suppressor, which showed significant clinically relevant in HIPC patients with doc-resistance. Mechanistically, in docetaxel-sensitive cells, LINC01085 could specifically bind to both TANK-binding kinase 1 (TBK1) and glycogen synthase kinase 3β (GSK3β), and higher LINC01085 RNA levels could inhibit TBK1 dimerization. Whereas, in doc-resistant cells, lower LINC01085 RNA level lost the strong binding with both, meanwhile, the interaction between TBK1 and GSK3β enhanced which accelerated TBK1 phosphorylation at the Ser-172 site, resulting in decreased expression levels of PD-L1 and NF-κB as well as the secretion of type I/III interferons. Thus, Overexpression of LINC01085 combined with immune checkpoint blockade is an effective strategy for the treatment of HIPC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.