Abstract

A high-resolution DOA-estimation technique is proposed to deal with unknown noise-spatial-covariance structure and unknown array-sensor gain. By modelling the source signals as autoregressive moving-average (ARMA) processes with unknown parameters, a formula is derived which relates the source DOAs with the source poles and array-covariance functions. A virtual data matrix is formed, independent of the sensor-gain uncertainty and noise covariance, and a factorisation of this virtual data matrix shows that the subspace-based techniques can be directly applied to estimate the source DOAs. This technique has the advantage that it requires neither the prior knowledge about the sensor-noise covariance nor the sensor-gain calibration. Simulation results are presented to show the effectiveness of the technique and comparisons with the MUSIC algorithm are also included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call