Abstract

We consider the computationally efficient direction-of-arrival (DOA) and noncircular (NC) phase estimation problem of noncircular signal for uniform linear array. The key idea is to apply the noncircular propagator method (NC-PM) which does not require eigenvalue decomposition (EVD) of the covariance matrix or singular value decomposition (SVD) of the received data. Noncircular rotational invariance propagator method (NC-RI-PM) avoids spectral peak searching in PM and can obtain the closed-form solution of DOA, so it has lower computational complexity. Animproved NC-RI-PMalgorithm of noncircular signal for uniform linear array is proposed to estimate the elevation angles and noncircular phases with automatic pairing. We reconstruct the extended array output by combining the array output and its conjugated counterpart. Our algorithm fully uses the extended array elements in the improved propagator matrix to estimate the elevation angles and noncircular phases by utilizing the rotational invariance property between subarrays. Compared with NC-RI-PM, the proposed algorithm has better angle estimation performance and much lower computational load. The computational complexity of the proposed algorithm is analyzed. We also derive the variance of estimation error and Cramer-Rao bound (CRB) of noncircular signal for uniform linear array. Finally, simulation results are presented to demonstrate the effectiveness of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.