Abstract

Studies of wild populations have provided important insights into the effects of artificial light at night on organisms, populations and ecosystems. However, in most studies the exact amount of light at night individuals are exposed to remains unknown. Individuals can potentially control their nighttime light exposure by seeking dark spots within illuminated areas. This uncertainty makes it difficult to attribute effects to a direct effect of light at night, or to indirect effects, e.g., via an effect of light at night on food availability. In this study, we aim to quantify the nocturnal light exposure of wild birds in a previously dark forest-edge habitat, experimentally illuminated with three different colors of street lighting, in comparison to a dark control. During two consecutive breeding seasons, we deployed male great tits (Parus major) with a light logger measuring light intensity every five minutes over a 24h period. We found that three males from pairs breeding in brightly illuminated nest boxes close to green and red lamp posts, were not exposed to more artificial light at night than males from pairs breeding further away. This suggests, based on our limited sample size, that these males could have been avoiding light at night by choosing a roosting place with a reduced light intensity. Therefore, effects of light at night previously reported for this species in our experimental set-up might be indirect. In contrast to urban areas where light is omnipresent, bird species in non-urban areas may evade exposure to nocturnal artificial light, thereby avoiding direct consequences of light at night.

Highlights

  • Natural night-time darkness has disappeared across large parts of the world [1] as a result of anthropogenic lighting of the environment

  • We were able to recapture 20 out of the 30 male great tits that were deployed with loggers, and we obtained light intensity data from 13 of them

  • The light intensity as recorded at the back of the male great tits did not change with increasing light intensity at the entrance of the nest box the pair was breeding in (Spearman’s rank correlation test: n = 13, rho = 0.15, p = 0.63; and see Fig 1)

Read more

Summary

Introduction

Natural night-time darkness has disappeared across large parts of the world [1] as a result of anthropogenic lighting of the environment. Effects of artificial light at night on ecosystems are increasingly being studied over the past decade [2]. In order to assess latent and ecosystemwide consequences, long-term experiments have been set up, e.g., in Germany [3], the United Kingdom [4] and the Netherlands [5]. These are starting to provide important insights into impacts of light at night on plant and animal populations, such as the suppression of flowering. No role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call