Abstract
Since the onset of the COVID-19 pandemic in 2019, the role of weather conditions in influencing transmission has been unclear, with results varying across different studies. Given the changes in border policies and the higher vaccination rates compared to earlier conditions, this study aimed to reassess the impact of weather on COVID-19, focusing on local climate effects. We analyzed daily COVID-19 case data and weather factors such as temperature, humidity, wind speed, and a diurnal temperature range from 1 March to 15 August 2022 across six regions in Taiwan. This study found a positive correlation between maximum daily temperature and relative humidity with new COVID-19 cases, whereas wind speed and diurnal temperature range were negatively correlated. Additionally, a significant positive correlation was identified between the unease environmental condition factor (UECF, calculated as RH*Tmax/WS), the kind of Climate Factor Complex (CFC), and confirmed cases. The findings highlight the influence of local weather conditions on COVID-19 transmission, suggesting that such factors can alter environmental comfort and human behavior, thereby affecting disease spread. We also introduced the Fire-Qi Period concept to explain the cyclic climatic variations influencing infectious disease outbreaks globally. This study emphasizes the necessity of considering both local and global climatic effects on infectious diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.