Abstract

A microscopic calculation of interacting-boson model (IBM) parameters is performed for Xe isotopes within the framework of the broken-pair model. We employ a shell-model hamiltonian which reproduces the spectra of near-magic and semi-magic nuclei. As a first approximation we adopt the idea of Otsuka, Arima and Iachello, that IBM states represent fermion states built from collective S- and D-pairs — the SD space. We show that at least two effects are needed to explain the empirical values of IBM parameters. Firstly there is a reduction in collectivity of S- and D-pairs in states with several broken pairs, due to the Pauli-blocking effect of the latter. Secondly the shell-model hamiltonian mixes the SD space with other fermion states which are not explicitly represented in the IBM. Among the latter, states with a collective G-pair ( J = 4) are the most important, but they contribute less than half of the total renormalization of the parameters. The calculated IBM parameters χ of the E2 transition operators exhibit similar trends to those which occur in the IBM hamiltonian. We explain the IBM Majorana force as a renormalization effect on states with even J; not as a repulsion in states with odd J. The latter emerge as rather pure states which mix little with the non-collective fermion space. This indicates that they may be experimentally observable. With our calculated parameters the IBM spectra and E2 transitions are of comparable quality to those obtained in IBM fits of the data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call