Abstract

For population pharmacokinetic analysis of multiple oral doses one of the key issues is knowing as precisely as possible the dose inputs in order to fit a model to the input-output (dose-concentration) relationship. Recently developed electronic monitoring devices, placed on pill containers, permit precise records to be obtained over months, of the time/date opening of the container. Such records are reported to be the most reliable measurement of drug taking behavior for ambulatory patients. To investigate strategies for using and summarizing this new abundant information, a Markov chain process model was developed, that simulates compliance data from real data from electronically monitored patients, and data simulations and analyses were conducted. Results indicate that traditional population pharmacokinetic analysis methods that ignore actual dosing information tend to estimate biased clearance and volume and markedly overestimate random interindividual variability. The best dosing information summarization strategies consist of initially estimating population pharmacokinetic parameters, using no covariates and only a limited number of dose records, the latter chosen based on an a priori estimate of the half-life of the drug in the compartment of interest; then resummarizing the dose records using either population or individual posterior Bayes parameter estimates from the first population fit; and finally reestimating the population parameters using the newly summarized dose records. Such summarization strategies yield the same parameter estimates as using full dosing information records while reducing by at least 75% the CPU time needed for a population pharmacokinetic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.