Abstract
Neutron stars are regarded as natural laboratories for the study of dense strong interaction matter. The equation of state (EoS) of dense matter computed in flat spacetime is used to predict the structure of neutron stars by solving the Tolman-Oppenheimer-Volkoff (TOV) equation. Recently, it has been reported that the curved spacetime effect or specifically gravitational time dilation effect on the EoS of dense matter leads to a significant increase of the maximum mass limit of neutron stars [Phys. Rev. D \textbf{104}, 123005 (2021) and J. Cosmol. Astropart. Phys. 02 (2021) 026]. However, in this work, we show that to study the hydrostatic equilibrium of dense matter within the framework of general relativity and relativistic fluid dynamics, the grand canonical EoS of dense matter, $p(T,\mu)$, should be the same as that computed in flat spacetime, otherwise it is not consistent with local thermodynamic relations and energy-momentum conservation of the fluid. The gravitation influences the pressure $p$ only through enhancing the temperature $T$ and the chemical potential $\mu$, known as Tolman's law and Klein's law. We rewrite the TOV equation as an alternative version so that the grand canonical EoS computed by using field theoretical methods can be used as a direct input. This may provide a tool to study the grand canonical EoS of dense matter via deep learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.