Abstract

Objectives: The purpose of the study was to investigate performance, biomechanical, physiological, and psychophysiological effects of a simple and easily organized post-activation potentiation (PAP) re-warm-up performed before a 50-m freestyle swimming sprint.Methods: Regional level male adolescent swimmers [age: 13.0 ± 2.0 years; (min 11 years – max 15 years)] performed four trial conditions (three experimental, one control) on different days. The control trial involved a standardized 1200-m warm-up followed by 30 min of rest and a maximal 50-m freestyle swimming sprint. The experimental trials involved the same protocol but added a PAP component after a 20-min rest (10 min pre-50-m): The different PAP component involved the subjects in completing a 30-s maximal effort of: (1) push-ups (PU – upper body), (2) squats (SQ – lower body), and (3) burpees (BP – lower and upper body). Performance (time-trial), biomechanical (stroke length, stroke frequency), physiological (blood lactate concentrations, heart rate), and psychophysiological (ratings of perceived exertion) variables were collected.Results: The results demonstrated that the PAP protocols used in this investigation had no effect on swimming performance. Before the 50-m swimming sprint, the lactate values were significantly higher after the PU, BP, and SQ PAP loads compared to the control condition [P(CC-PU) = 0.02; P(CC-BP) = 0.01; P(CC-SQ) = 0.04]. For Lactate values, a significant and large effect of experimental condition compared to control condition was found (p < 0.05, η2 = 0.68). At 1 min after the 50-m time trial, significant differences were observed between the control condition and the different PAP loads [P(CC-PU) = 0.01; P(CC-BP) = 0.04; P(CC-SQ) = 0.01]. At 3 min after the 50-m sprint, significant differences were found between the control condition and the PU and SQ PAP loads [P(CC-PU) = 0.018; P(CC-SQ) = 0.008, respectively]. Additionally, a significant and large effect of experimental condition was found at 1 and 3 min after the 50-m swimming sprint (p < 0.05, η2(1 min) = 0.73; η2(3 min) = 0.59). There were medium sized but non-significant effects of interaction between the conditions, was illustrated for the mean HR values in response to the different conditions (p > 0.05; η2 = 0.083).Conclusion: None of the three PAP protocols showed any significant improvement in performance, biomechanical, physiological, and psychophysiological variables before, during and after the 50-m swimming time-trial. Further studies are warranted to investigate ways to improve swimming performance with simple body mass exercises performed in-between the end of pool warm-up and race start.

Highlights

  • On competition day swimmers have a period of warm-up prior to a race event

  • Before the 50-m race, the lactate values were significantly higher after the PU, BP, and Squat Jumps (SQ) post-activation potentiation (PAP) loads compared to the control condition [P(CC−PU) = 0.02; P(CC−BP) = 0.01; P(CC−SQ) = 0.04]

  • The results showed that the 30-s PAP exercises used in this investigation 10 min before the 50-m race had no effect on sprint swimming performance

Read more

Summary

Introduction

On competition day swimmers have a period of warm-up prior to a race event. The aim of this warm-up period is to help the swimmer optimize psychological, neurological, and physiological states for the best performance (Bishop, 2003). Alternative forms of rewarm-up are potentially needed In this context, most studies about warming up in swimming have reported a 10-min period of recovery between the warm-up and the swimming trial, and little is known about swimmer performance when longer recoveries are used (Neiva et al, 2015). It is linked to increased Ca2+ concentration in sarcoplasm, implying greater phosphorylation of light-chain myosin, as well as greater formation of cross-bridges (Macintosh et al, 2012) In this sense, the skeletal muscle force output is regulated through Ca2+mediated alterations of the rate at which cross bridges make the transition from non-force-generating to force-generating states (Vandenboom et al, 1993)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.