Abstract
The present studies were performed to determine the response of the brain water and electrolytes to acute hypoosmolality and hyperosmolality in animals with intact skull and dura, in comparison with those subjected to extensive bilateral or unilateral craniectomy and dural opening. Four to 5 weeks following extensive unilateral or bilateral craniectomy and dural opening in rats, a 50 mosm/kg decrease in plasma osmolality was produced by systemic administration of distilled water ("water intoxication"), or a 28 mosm/kg increase in plasma osmolality was produced by systemic administration of either 1 M NaCl or 1 M mannitol in 0.34 M NaCl. Tissue water, Na, and K contents were determined after 120 minutes. Tissue water accumulation or water loss was proportional to the decrease or increase in plasma osmolality. However, the tissue water accumulation following "water intoxication" was less (40% of the predicted value) than that predicted for ideal osmotic behaviour. The brain tissue was also found to shrink less than predicted on the basis of ideal osmotic behaviour (40% of the predicted value after mannitol treatment, and 60% after NaCl administration). This non-ideal osmotic response of the brain tissue is consistent with the finding in other studies and indicated a significant degree of volume regulation. Water and electrolyte changes were not different in operated and non-operated animals, demonstrating no effects of extensive skull and dura defects on tissue volume regulation under hypo- and hyperosmolar conditions of a degree that may be encountered under clinical circumstances.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.