Abstract
The standard Bloch sphere representation has been recently generalized to describe not only systems of arbitrary dimension, but also their measurements, in what has been called the extended Bloch representation of quantum mechanics. This model, which offers a solution to the longstanding measurement problem, is based on the hidden-measurement interpretation of quantum mechanics, according to which the Born rule results from our lack of knowledge of the measurement interaction that each time is actualized between the measuring apparatus and the measured entity. In this article, we present the extended Bloch model and use it to investigate, more specifically, the nature of the quantum spin entities and of their relation to our three-dimensional Euclidean theater. Our analysis shows that spin eigenstates cannot generally be associated with directions in the Euclidean space, but only with generalized directions in the Blochean space, which apart from the special case of spin one-half entities, is a space of higher dimensionality. Accordingly, spin entities have to be considered as genuine non-spatial entities. We also show, however, that specific vectors can be identified in the Blochean theater that are isomorphic to the Euclidean space directions, and therefore representative of them, and that spin eigenstates always have a predetermined orientation with respect to them. We use the details of our results to put forward a new view of realism, that we call multiplex realism, providing a specific framework with which to interpret the human observations and understanding of the component parts of the world. Elements of reality can be represented in different theaters, one being our customary Euclidean space, and another one the quantum realm, revealed to us through our sophisticated experiments, whose elements of reality, in the quantum jargon, are the eigenvalues and eigenstates. Our understanding of the component parts of the world can then be guided by looking for the possible connections, in the form of partial morphisms, between the different representations, which is precisely what we do in this article with regard to spin entities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.