Abstract

Free radical spin traps such as phenyl tert-butylnitrone (PBN) are often reported to provide protection of the central nervous system of animal models against free radical damage, and the effects are attributed to its “antioxidant activity.” The effects of PBN and p-CH 3O-PBN were compared with known antioxidants, α-tocopherol and 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC), in quantitative kinetic studies of lipid peroxidation thermally initiated under controlled conditions. Results obtained on the spin traps in organic solvents and in dilinoleoyl phosphatidylcholine (DLPC) bilayers indicated that the spin traps do not act as peroxyl radical trapping antioxidants but rather act only as moderate “retarders” of oxygen uptake at relatively high concentration. At low oxygen partial pressures, e.g., 14 torr, which better reflect oxygen partial pressures in biological systems, PBN provides a more significant reduction in oxygen uptake (up to 50%) by DLPC bilayers but still did not act as a typical antioxidant. However, at low partial pressures, PBN does act cooperatively with PMHC. It is suggested that its role in biological fluids and tissues may be to extend the suppressed oxidation by natural antioxidants expected to be present. The combination of antioxidant/spin trap, α-(3,5-di- tert-butyl-4-hydroxyphenyl)- N- tert-butylnitrone did not exhibit any enhanced antioxidant efficiency compared with the related hindered phenol, 2,6-di- tert-butyl-4-methoxyphenol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.