Abstract
ABSTRACTSatellite remote sensing has greatly facilitated the assessment of aboveground biomass in rangelands. Soil-adjusted vegetation indices have been developed to provide better predictions of aboveground biomass, especially for dryland regions. Semi-arid rangelands often complicate a remote sensing based assessment of aboveground biomass due to bright reflecting soils combined with sparse vegetation cover. We aim at evaluating whether soil-adjusted vegetation indices perform better than standard, i.e. unadjusted, vegetation indices in predicting dry aboveground biomass of a saline and semi-arid rangeland in NE-Iran. 672 biomass plots of 2 × 2 m were gathered and aggregated into 13 sites. Generalized Linear Regression Models (GLM) were compared for six different vegetation indices, three standard and three soil-adjusted vegetation indices. Vegetation indices were calculated from the MODIS MCD43A4 product. Model comparison was done using Akaike Information Criterion (AICc), Akaike weights and pseudo R2. Model fits for dry biomass showed that transformed NDVI and NDVI fitted best with R2 = 0.47 and R2 = 0.33, respectively. The optimized soil-adjusted vegetation index (OSAVI) behaved similar to NDVI but less precise. The soil-adjusted vegetation index (SAVI), the modified soil-adjusted vegetation index (MSAVI2) and the enhanced vegetation index (EVI) performed worse than a null model. Hence, soil-adjusted indices based on the soil-line concept performed worse than a simple square root transformation of the NDVI. However, more studies that compare MODIS based vegetation indices for rangeland biomass estimation are required to support our findings. We suggest applying a similar model comparison approach as performed in this study instead of relying on single vegetation indices in order to find optimal relationships with aboveground biomass estimation in rangelands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.