Abstract

We explore the motor unit recruitment and control of perfusion of microvascular units in skeletal muscle to determine whether they coordinate to match blood flow to metabolic demand. The PubMed database was searched for historical, current and relevant literature. A microvascular, or capillary unit consists of 2-20 individual capillaries. Individual capillaries within a capillary unit cannot increase perfusion independently of other capillaries within the unit. Capillary units perfuse a short segment of approx. 12 muscle fibres located beside each other. Motor units consist of muscle fibres that can be dispersed widely within the muscle volume. During a contraction, where not all motor units are recruited, muscle fibre contraction will result in increased perfusion of associated capillaries as well as all capillaries within that capillary unit. Perfusion of the entire capillary unit will result in an increased blood flow delivery to muscle fibres associated with active motor unit plus approximately 11 other inactive muscle fibres within the same region. This will result in an overperfusion of the muscle resulting in blood flow in excess of the muscle fibre needs. Given the architecture of the capillary units and the dispersed nature of muscle fibres within a motor unit, during submaximal contractions, where not all motor units are recruited, there will be a greater perfusion to the muscle than that predicted by the number of active muscle fibres. Such overperfusion brings into question if blood flow and metabolic demand are as tightly matched as previously assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.