Abstract

Fretting corrosion is one contributor to the clinical failure of modular joint arthroplasty. It is initiated by micromotion in metal junctions exposed to fluids. Omitting metal-on-metal contacts could help to reduce the corrosion risk. The coating of one metal taper partner with a ceramic-based silicon nitride (SiNx) coating might provide this separation. The aim of the study was to identify whether a SiNx coating of the male taper component influences the micromotion within a taper junction. Hip prosthesis heads made of CoCr29Mo6 (Aesculap) and Ti6Al4V (Peter Brehm) were assembled (2000 N) to SiNx-coated and uncoated stem tapers made of Ti6Al4V and CoCr29Mo6 (2×2×2 combinations, each n = 4). Consecutive sinusoidal loading representing three daily activities was applied. Contactless relative motion in six degrees of freedom was measured using six eddy-current sensors. Micromotion in the junction was determined by compensating for the elastic deformation derived from additional monoblock measurements. After pull-off, the taper surfaces were microscopically inspected. Micromotion magnitude reached up to 8.4 ± 0.8 µm during loading that represented stumbling. Ti6Al4V stems showed significantly higher micromotion than those made of CoCr29Mo6, while taper coating had no influence. Statistical differences in pull-off forces were found for none of the taper junctions. Microscopy revealed CoCr29Mo6 abrasion from the head taper surface if combined with coated stem tapers. Higher micromotion of Ti6Al4V tapers was probably caused by the lower Young's modulus. Even in the contact areas, the coating was not damaged during loading. The mechanics of coated tapers was similar to uncoated prostheses. Thus, the separation of the two metal surfaces with the objective to reduce in vivo corrosion appears to be achievable if the coating is able to withstand in vivo conditions. However, the hard ceramic-based stem coating lead to undesirable debris from the CoCr29Mo6 heads during loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.