Abstract

Nest-building behaviour in birds may be particularly relevant to investigating the evolution of physical cognition, as nest building engages cognitive mechanisms for the use and manipulation of materials. We hypothesized that nest-building ecology may be related to physical cognitive abilities. To test our hypothesis, we used zebra finches, which have sex-differentiated roles in nest building. We tested 16 male and 16 female zebra finches on three discrimination tasks in the following order: length discrimination, flexibility discrimination, and color discrimination, using different types of string. We predicted that male zebra finches, which select and deposit the majority of nesting material and are the primary nest builders in this species, would learn to discriminate string length and flexibility-structural traits relevant to nest building-in fewer trials compared to females, but that the sexes would learn color discrimination (not structurally relevant to nest building) in a similar number of trials. Contrary to these predictions, male and female zebra finches did not differ in their speed to learn any of the three tasks. There was, however, consistent among-individual variation in performance: learning speed was positively correlated across the tasks. Our findings suggest that male and female zebra finches either (1) do not differ in their physical cognitive abilities, or (2) any cognitive sex differences in zebra finches are more specific to tasks more closely associated with nest building. Our experiment is the first to examine the potential evolutionary relationship between nest building and physical cognitive abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call