Abstract

Sacrificial bonds have been suggested as a toughening mechanism for bone tissue. Ionic bridges formed by divalent calcium ions between collagen molecules have been proposed as candidates for sacrificial bonds. If this mechanism is active at the macroscopic level, we should observe changes in mechanical properties of bone when calcium ions are maintained or removed from the tissue. To test this hypothesis, we measured viscoelastic and monotonic mechanical properties of cortical bone subjected to differing ionic environments. Storage modulus of bone could be changed up to 3.8% by the presence or absence of Na+ or Ca++ in the environment in a reversible fashion when bones were monitored continuously during treatments. A long-term one-time treatment increased the viscoelastic properties of bone soaked in Na+ solutions whereas the viscoelastic properties of bones soaked in Ca++ solutions were maintained. However, the strength and toughness of bone specimens soaked and fractured in treatment solutions were not improved. The presence of Ca++ affected the mechanical behavior of mineralized bone tissue at the macro scale. These effects were reversible, consistent with the original proposal. However, these effects may not necessarily indicate an increase in strength or toughness of the tissue at the macro scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call