Abstract

Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.

Highlights

  • Human presence can have a major impact on animal behavior and through this have significant consequences for ecosystem health and function

  • Despite major differences in historical diver presence, we find no significant differences between the two reef systems with respect to scleractinian coral cover (Utila = 19.54 ±2.45%; Cochinos Marine Protected Area (CCMPA) = 21.06 ±1.44%), fish species richness (Utila = 31.06 ±1.44 species; CCMPA = 29.67 ±1.11 species), or B. annulata cleaning station density (Utila = 3.78 ±0.84 250m-2; CCMPA = 4.06 ±0.68 250m-2)

  • There was no significant difference in anemone size (CCMPA: 141.48 ± 25.68 cm2; Utila: 136.98 ± 23.91 cm2; Mann-Whitney U-Test; U = 174.5, p = 0.85) or group size of A. pedersoni (CCMPA: 3.10 ± 0.42 shrimp; Utila: 2.80 ± 0.56 shrimp; U = 718.5, p = 0.22) between stations used across treatments

Read more

Summary

Introduction

Human presence can have a major impact on animal behavior and through this have significant consequences for ecosystem health and function. The majority of studies of animal behavior involve direct human observation This entails passive human presence, relying on the assumption that observers have a neutral impact on the behavior of interest. SCUBA traditionally relies on noisy open-circuit regulators that emit low-frequency sound waves detectable up to 200m away [15, 16], and as visibility rarely exceeds 30m, divers must get close to the wildlife. This underwater “observer effect” has been acknowledged in scientific [17, 18] and recreational [19] contexts. We have yet to understand the long-term cumulative effect SCUBA diver presence has on animal behavior in the marine environment, especially the consequences of repeated exposure on ecosystem function, species interactions, and the habituation potential to diver presence across a community of individuals

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.