Abstract

The water inside reverse micelles can differ dramatically from bulk water. Some changes in properties can be attributed to the interaction of water molecules with the micellar interface, forming a layer of shell water inside the reverse micelle. The work reported here monitors changes in intramicellar water through chemical shifts and signal line widths in 51V NMR spectra of a large polyoxometalate probe, decavanadate, and from infrared spectroscopy of isotopically labeled water, to obtain information on the water in the water pool in AOT reverse micelles formed in isooctane. The studies reveal several things about the reverse micellar water pool. First, in agreement with our previous measurements, the proton equilibrium of the decavanadate solubilized within the reverse micelles differs from that in bulk aqueous solution, indicating a more basic environment compared to the starting stock solutions from which the reverse micelles were formed. Below a certain size, reverse micelles do not form when the polyoxometalate is present; this indicates that the polyanionic probe requires a layer of water to solvate it in addition to the water that solvates the surfactant headgroups. Finally, the polyoxometalate probe appears to perturb the water hydrogen-bonding network in a fashion similar to that in the interior surface of the reverse micelles. These measurements demonstrate the dramatic differences possible for water environments in confined spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.