Abstract

Extreme climatic events such as heatwaves are anticipated to intensify in future and impose additional thermal stress to aquatic animals. Knowledge regarding an organism's thermal tolerance or sensitivity is therefore important in determining the effects of fluctuating water temperature on physiological responses. Thus, thermal tolerance tests can serve as a first step in understanding the present and future effects of climate warming. Climatic variability will alter prey-predator attributes differentially and impact their subsequent interactions. The key objective of this study was to compare and decode the stress responses, resistance and vulnerability of two economically important species from Sundarbans estuarine system- Penaeus monodon (prey) and Mystus gulio (predator) subjected to acute thermal challenges such as sudden heatwaves. Both the species were subjected to an increasing thermal ramp of 1°C h−1 from 22°C to 42°C. Organisms were observed continuously throughout the ramping period and changes in the locomotory behaviour were followed until their loss of equilibrium. The digestive tissue samples were dissected out from both M. gulio and P. monodon at every 2°C and also after a recovery period of 48 h. The SOD, CAT, GST, LPO were measured and integrated biomarker response (IBR) was analysed. The results from thermal tolerance maxima estimation, biomarker study, IBR responses indicated more intense stress response in fish M. gulio whereas recovery potential was greater in shrimp P. monodon. Our findings corroborate the ‘trophic sensitivity hypothesis’ which advocates predators to be less tolerant in aggravated environmental stress than their prey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.