Abstract

It has been reported in the literature that sugars such as dextrose and sucrose increase the surface tension of water. The effect was interpreted as a depletion of the solute molecules from the water-air interface. This paper presents accurate measurements of the surface tension of different concentrations of dextrose solution as well as its polymer (i.e., dextran). An automated drop shape technique called axisymmetric drop shape analysis (ADSA) was used for the surface tension determination. The surface tension measurement is presented as a function of a shape parameter, P(s), which has been used to quantify the range of the applicability of ADSA. The results of the above study show that dextrose solutions decrease the surface tension of water in contradiction to the results obtained from the weight drop method in the literature. The surface tension decreases continuously with increasing concentration. A similar effect was observed for the dextran solutions. To verify that the setup and the methodology are capable of accurately measuring increases in surface tension, a similar experiment was conducted with a sodium chloride solution with a concentration of 1 M. It is well-known that electrolyte solutions, e.g., sodium chloride, increase the surface tension of water. The results obtained from ADSA verify that the sodium chloride increases the surface tension of water by 1.6 mJ/m(2). It is concluded that dextrose and dextran decrease the surface tension of water. Thus, there is no evidence of depletion. To identify the sources of discrepancy between the results of ADSA and those reported in the literature, the experiments were repeated for different concentrations and the rate of drop formation using the drop weight method. It was found that the rate of drop formation is most likely the source of error in the results reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.