Abstract

Three semiarid Mediterranean patchy landscapes were investigated to test the existence of a microsite effect (i.e. plant canopy vs. inter-canopy) on soil microbial communities. Surface soil samples were independently taken from both microsites under naturally changing conditions of humidity and temperature through the year. In gypsiferous soils covered with a shrub steppe, improved physical and chemical soil properties were registered underneath the plant canopy, where the densest and most active microbial communities were also detected (e.g. microbial biomass C averaged 531 and 202 mg kg −1 in canopy and inter-canopy areas, respectively). In calcareous perennial tussock grasslands, either growing on soils over limestones or alluvial deposits, the microsite effect was not so marked. Soil humidity, temperature and total organic C were homogeneously distributed over the landscape conditioning their uniform microbial activity under field moisture conditions (ATP content averaged 853 and 885 nmol kg −1 in canopy and intercanopy areas, respectively). However, readily mineralizable C and microbial biomass C were preferentially accumulated in soils underneath the tussocks determining their larger potential microbial activity (e.g. C hydrolysis capacity under optimal conditions). In conclusion, plant clumps either functioned as microbial hotspots where enhanced microbially driven ecosystem processes took place or as microbial banks capable of undergoing a burst of activity under favourable climatic conditions. Our results provide experimental evidence of a non-patchy distribution of certain soil microbial properties in semi-arid Mediterranean patchy ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call