Abstract

In this paper, we present a human-in-the-loop learning framework for mobile robots to generate effective local policies in order to recover from navigation failures in long-term autonomy. We present an analysis of failure and recovery cases derived from long-term autonomous operation of a mobile robot, and propose a two-layer learning framework that allows to detect and recover from such navigation failures. Employing a learning by demonstration (LbD) approach, our framework can incrementally learn to autonomously recover from situations it initially needs humans to help with. The learning framework allows for both real-time failure detection and regression using Gaussian processes (GPs). Our empirical results on two different failure scenarios indicate that given 40 failure state observations, the true positive rate of the failure detection model exceeds 90%, ending with successful recovery actions in more than 90% of all detected cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.