Abstract

Abstract1. Ecological count data (e.g., number of individuals or species) are often log-transformed to satisfy parametric test assumptions.2. Apart from the fact that generalized linear models are better suited in dealing with count data, a log-transformation of counts has the additional quandary in how to deal with zero observations. With just one zero observation (if this observation represents a sampling unit), the whole dataset needs to be fudged by adding a value (usually 1) before transformation. 3. Simulating data from a negative binomial distribution, we compared the outcome of fitting models that were transformed in various ways (log, square-root) with results from fitting models using Poisson and negative binomial models to untransformed count data. 4. We found that the transformations performed poorly, except when the dispersion was small and the mean counts were large. The Poisson and negative binomial models consistently performed well, with little bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.