Abstract
ABSTRACTIn the debate about filter bubbles caused by algorithmic news recommendation, the conceptualization of the two core concepts in this debate, diversity and algorithms, has received little attention in social scientific research. This paper examines the effect of multiple recommender systems on different diversity dimensions. To this end, it maps different values that diversity can serve, and a respective set of criteria that characterizes a diverse information offer in this particular conception of diversity. We make use of a data set of simulated article recommendations based on actual content of one of the major Dutch broadsheet newspapers and its users (N=21,973 articles, N=500 users). We find that all of the recommendation logics under study proved to lead to a rather diverse set of recommendations that are on par with human editors and that basing recommendations on user histories can substantially increase topic diversity within a recommendation set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.