Abstract

ABSTRACTConventional methods apply symmetric prior distributions such as a normal distribution or a Laplace distribution for regression coefficients, which may be suitable for median regression and exhibit no robustness to outliers. This work develops a quantile regression on linear panel data model without heterogeneity from a Bayesian point of view, i.e. upon a location-scale mixture representation of the asymmetric Laplace error distribution, and provides how the posterior distribution is summarized using Markov chain Monte Carlo methods. Applying this approach to the 1970 British Cohort Study (BCS) data, it finds that a different maternal health problem has different influence on child's worrying status at different quantiles. In addition, applying stochastic search variable selection for maternal health problems to the 1970 BCS data, it finds that maternal nervous breakdown, among the 25 maternal health problems, contributes most to influence the child's worrying status.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.