Abstract

AbstractMagnetic fields have been hypothesized to inflate the radii of low-mass stars—defined as less than 0.8 M⊙–in detached eclipsing binaries (DEBs). We evaluate this hypothesis using the magnetic Dartmouth stellar evolution code. Results suggest that magnetic suppression of thermal convection can inflate low-mass stars that possess a radiative core and convective outer envelope. A scaling relation between X-ray luminosity and surface magnetic flux indicates that model surface magnetic field strength predictions are consistent with observations. This supports the notion that magnetic fields may be inflating these stars. However, magnetic models are unable to reproduce radii of fully convective stars in DEBs. Instead, we propose that model discrepancies below the fully convective boundary are related to metallicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.