Abstract

Recently, new arguments [E. Barausse, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063537 (2005).][E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, hep-th/0503117 [Phys. Rev. Lett. (to be published)].] for how corrections from super-Hubble modes can explain the present-day acceleration of the universe have appeared in the literature. However, in this paper, we argue that, to second order in spatial gradients, these corrections only amount to a renormalization of local spatial curvature, and thus cannot account for the negative deceleration. Moreover, cosmological observations already put severe bounds on such corrections, at the level of a few percent, while in the context of inflationary models, these corrections are typically limited to $\ensuremath{\sim}{10}^{\ensuremath{-}5}$. Currently there is no general constraint on the possible correction from higher order gradient terms, but we argue that such corrections are even more constrained in the context of inflationary models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.