Abstract

Human activities are closely related to carbon emissions and the mechanism of land-use structure change on carbon emissions is unclear. In this study, 143 counties in the Sichuan Basin of China were used as sample units, and the land use structure of each sample unit in the Sichuan Basin was measured by applying the information entropy theory, analyzing the spatial and temporal evolutionary characteristics and the influencing relationships of land use structure and carbon emissions in the Sichuan Basin, by spatial econometric analysis of panel data on carbon emissions and information entropy of land use structure over five time periods from 2000 to 2018. The results indicate that: the carbon emission intensity and information entropy of land use in the Sichuan basin are increasing over the years, and the cross-sectional data reflect inconsistent spatial distribution characteristics, with greater changes around large cities; both carbon emissions and land use structure are spatially auto-correlated, the information entropy of land use positively affects carbon emission intensity; carbon emissions have positive spillover effects, and changes in land use structure have no obvious regional impact on surrounding areas; there may be potential threshold areas for the impact of land-use structure change on carbon emissions. This study has certain reference value for land use planning and carbon emission reduction policies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call