Abstract

Hormonal control systems are complex in design and well integrated. Concern has been raised that these systems might act as evolutionary constraints when animals are subject to anthropogenic environmental change. Three systems are examined in vertebrates, especially birds, that are important for assessing this possibility: (i) the hypothalamic-pituitary-gonadal (HPG) axis, (ii) the activational effects of sex steroids on mating effort behaviour, and (iii) sexual differentiation. Consideration of how these systems actually work that takes adequate account of the brain's role and mechanisms suggests that the first two are unlikely to be impediments to evolution. The neural and molecular networks that regulate the HPG provide both phenotypic and evolutionary flexibility, and rapid evolutionary responses to selection have been documented in several species. The neuroendocrine and molecular cascades for behaviour provide many avenues for evolutionary change without requiring a change in peripheral hormone levels. Sexual differentiation has some potential to be a source of evolutionary inertia in birds and could contribute to the lack of diversity in certain reproductive (including life history) traits. It is unclear, however, whether that lack of diversity would impede adaptation to rapid environmental change given the role of behavioural flexibility in avian reproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call