Abstract

A dye-sensitized solar cell assembly can be used to harvest solar energy, while suitable dye sensitizers can be used to purify water. Here, we characterized the activity trends of four dye sensitizers, namely, PORPC-1, PORPC-2, PORPC-3, and PORPC-4, for water purification applications using density functional theory (DFT) with the Perdew–Burke–Ernzerhof (PBE), B3LYP, and PBE0 functionals, ΔSCF, time-dependent DFT (TD-DFT), and quasiparticle Green’s function (GW) methods. The energy levels of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) were calculated using gas-phase and aqueous-phase methods in order to understand charge-injection abilities and the dye regeneration processes. PBE, B3LYP, PBE0, and TD-DFT methods failed to predict PORPC-4 to be the best sensitizer, while PORPC-2 and PORPC-4 were predicted to be the best sensitizers using ΔSCF coupled with the implicit solvation method, and HOMO–LUMO energies were corrected for the aqueous environment in the GW calculations. However, none of these methods accurately predicted the performance trend of all four dye sensitizers. Consequently, we used the aggregation assembly patterns of the dye molecules in an aqueous environment to further probe the activity trends and found that PORPC-3 and PORPC-4 prefer J-aggregated assembly patterns, whereas PROPC-1 and PORPC-2 prefer to be H-aggregated. Therefore, the performance of these dye molecules can be determined by combining HOMO–LUMO energy levels with aggregate-assembly patterns, with the activity trend predicted to be PORPC-4 > PORPC-2 > PORPC-3 > PORPC-1, which is in good agreement with experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.