Abstract

The adsorption of a single H(2)O and NH(3) molecule on different fully hydroxylated α-quartz, cristobalite, and tridymite surfaces has been studied at the B3LYP level of theory, within a periodic approach using basis sets of polarized triple-ζ quality and accounting for basis set superposition error (BSSE). Fully hydroxylated crystalline silica exhibits SiOH as terminal groups whose distribution and H-bond features depend on both the considered silica polymorph and the crystallographic plane, which gives rise to isolated, H-bond interacting SiOH pairs or infinitely connected H-bond chains. A key point of the present study is to understand how the H-bond features of a dry crystalline silica surface influence its adsorption properties. Results reveal that the silica-adsorbate (H(2)O and NH(3)) interaction energy anticorrelates with the density of SiOH groups at the surface. This counterintuitive observation arises from the fact that pre-existing H-bonds of the dry surface need to be broken to establish new H-bonds between the surface and the adsorbate, which manifests in a sizable energy cost due to surface deformation. A simple method is also proposed to estimate the strength of the pre-existing H-bonds at the dry surfaces, which is shown to anticorrelate with the adsorbate interaction energy, in agreement with the above trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.