Abstract

Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.