Abstract

IntroductionAmong the most dangerous pollutants is PM2.5, which can directly pass through human lungs and move into the blood system. The use of nature-based solutions, such as increased vegetation cover in an urban landscape, is one of the possible solutions for reducing PM2.5 concentration. Our study objective was to understand the importance of green spaces in pollution reduction.MethodsDaily PM2.5 concentrations were manually collected at nine monitoring stations in Nanjing over a 534-day period from the air quality report of the China National Environmental Monitoring Center (CNEMC) to quantify the spatiotemporal change of PM2.5 concentration and its empirical relationship with vegetation and landscape structure in Nanjing.ResultsThe daily average, minimum, and maximum PM2.5 concentrations from the nine stations were 74.0, 14.2, and 332.0 μg m−3, respectively. Out of the 534 days, the days recorded as “excellent” and “good” conditions were found mostly in the spring (30.7 %), autumn (25.6 %), and summer (24.5 %), with only 19.2 % of the days in the winter. High PM2.5 concentrations exceeding the safe standards of the CNEMC were recorded predominately during the winter (39.3–100.0 %). Our hypothesis that green vegetation had the potential to reduce PM2.5 concentration was accepted at specific seasons and scales. The PM2.5 concentration appeared very highly correlated (R2 > 0.85) with green cover in spring at 1–2 km scales, highly correlated (R2 > 0.6) in autumn and winter at 4 km scale, and moderately correlated in summer (R2 > 0.4) at 2-, 5-, and 6-km scales. However, a non-significant correlation between green cover and PM2.5 concentration was found when its level was >75 μg m−3. Across the Nanjing urban landscape, the east and southwest parts had high pollution levels.ConclusionsAlthough the empirical models seemed significant for spring only, one should not devalue the importance of green vegetation in other seasons because the regulations are often complicated by vegetation, meteorological conditions, and human activities.

Highlights

  • Among the most dangerous pollutants is PM2.5, which can directly pass through human lungs and move into the blood system

  • Through a simple correlation regression analysis between the PM2.5 concentration and all landscape metrics, we found that forest cover, grass cover, total green cover, and total edge length around the green covers were highly correlated with PM2.5 concentration (Fig. 6)

  • In battling the increasing intensity and frequency of air pollution in urban landscapes, daily PM2.5 concentration was manually collected from the China National Environmental Monitoring Center (CNEMC) webpage to quantify the spatiotemporal changes of PM2.5—the most dangerous pollutant affecting urban dwellings

Read more

Summary

Introduction

Among the most dangerous pollutants is PM2.5, which can directly pass through human lungs and move into the blood system. The use of nature-based solutions, such as increased vegetation cover in an urban landscape, is one of the possible solutions for reducing PM2.5 concentration. PM2.5 can be decomposed over time through multiple chemical, physical, and biological processes such as dry and wet deposition. Land surface properties, such as roads, construction, and vegetation, can directly filter pollutants and indirectly influence the air movement through its heterogeneous urban canopies (Janhäll 2015). While the ultimate solution for most cities is to eliminate the emission sources, other proposals to reduce PM2.5 concentration are underway; these include engineering methods for filtration and uptake (Hänninen et al 2005) or using nature-based solutions (NBS), such as increasing vegetation cover in urban landscapes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call