Abstract

Hong Kong is a compact city with high activity and travel intensity. In the past decades, many footbridges and underpasses were installed to reduce the pedestrian-vehicle conflicts on urban roads. However, it is rare that the effects of configuration of pedestrian network on pedestrian crashes are investigated. In Hong Kong, many footbridges and underpasses are connected to major transport hubs and commercial building development and become parts of giant elevated and underground walkway systems. It is challenging to characterize such a complicated pedestrian network. In this study, a three-dimensional digital map is applied to estimate the connectivity and accessibility of pedestrian network, and measure the relationship between pedestrian network characteristics and pedestrian safety at the macroscopic level. Hence, the effects of footbridge and underpass on pedestrian safety are examined. For example, comprehensive built environment, pedestrian network, traffic, and crash data are aggregated to 379 grids (0.5 km × 0.5 km). Then, multivariate Poisson lognormal regression approach is applied to model fatal and severe injury (FSI) and slight injury pedestrian crashes, with which the effects of unobserved heterogeneity, spatial correlation, and correlation between crash counts are accounted. Results indicate that population density, traffic volume, walking trip, footpath density, node density, number of vertices per footpath segment, bus stop, metro exit, residential area, commercial area, and government and utility area are positively associated with pedestrian crashes. In contrast, average gradient, accessibility of footbridge, accessibility of underpass, and number of crossings per road segment are negatively associated with pedestrian crashes. In other word, pedestrian safety would be improved when footbridge and underpass are more accessible. Findings have implications for the design and planning of pedestrian network to promote walkability and improve pedestrian safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.