Abstract
An inverted liquid bottle with a small neck diameter empties through periodic admission of air bubbles at the neck, followed by liquid discharge, a process termed ‘glugging’. In contrast, a large Taylor bubble rises to the air–water interface in the bottle for large neck diameters, followed by an instant interface collapse and a chaotic liquid discharge. We numerically find that a spiral large-scale rotating structure due to churning motion develops in the liquid during time evolution in an emptying bottle, though an initial swirl is not imposed. The induced structure is strong for a large neck bottle, and the circulation strength is maximum near the neck region. The spiral structure’s strength decreases for small neck diameters, and a pure oscillatory ‘glugging’ mode is preserved. The high circulation strength near the neck region for the large neck bottle causes liquid to accelerate and is the reason for the existing empirical models on liquid discharge to deviate from experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.