Abstract

Partitioning of the niche space is a mechanism used to explain the coexistence of similar species. Ectotherms have variable body temperatures and their body temperatures influence performance and, ultimately, fitness. Therefore, many ectotherms use behavioral thermoregulation to avoid reduced capacities associated with body temperatures far from the optimal temperature for performance. Several authors have proposed that thermal niche partitioning in response to interspecific competition is a mechanism that allows the coexistence of similar species of ectotherms. We reviewed studies on thermal resource partitioning to evaluate the evidence for this hypothesis. In almost all studies, there was insufficient evidence to conclude unequivocally that thermal resource partitioning allowed species coexistence. Future studies should include sites where species are sympatric and sites where they are allopatric to rule out alternative mechanisms that cause differences in thermal traits between coexisting species. There is evidence of conservatism in the evolution of most thermal traits across a wide range of taxa, but thermal performance curves and preferred temperatures do respond to strong selection under laboratory conditions. Thus, there is potential for selection to act on thermal traits in response to interspecific competition. Nevertheless, more stringent tests of the thermal resource partitioning hypothesis are required before we can assess whether it is widespread in communities of ectotherms in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call