Abstract
Globally, forests are impacted by atmospheric nitrogen (N) deposition, affecting their structure and functioning above and below ground. All trees form mutualistic root symbioses with mycorrhizal fungi. Of the two kinds of mycorrhizal symbioses of trees, the ectomycorrhizal (EcM) symbiosis is much more sensitive to N enrichment than the arbuscular mycorrhizal (AM) symbiosis. Due to increasing N deposition, significant declines in the richness and abundance of EcM fungal species and shifts in community composition and functional traits have been recorded. Under increasing N deposition, ectomycorrhizal forests usually show enhanced foliar mass fractions of N, reduced foliar mass fractions of phosphorus (P), and, consequently, an increasing imbalance in the foliar N:P stoichiometry, ultimately impacting tree performance. The question has been raised of whether, under conditions of high N deposition, EcM trees can select EcM fungi that are both tolerant to high N availability and efficient in the acquisition of P, which could to some extent mitigate the negative impact of N deposition on nutrient balances. Here we evaluate the literature for mechanisms through which certain EcM fungi could increase P acquisition under increased N loading. We find very little evidence that under N enrichment, EcM fungi that have on average higher P efficiency might be selected and thereby prevent or delay tree N:P imbalances. However, methodological issues in some of these studies make it imperative to treat this conclusion with caution. Considering the importance of avoiding tree N:P disbalances under N enrichment and the need to restore EcM forests that have suffered from long-term excess N loading, further research into this question is urgently required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.